Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

THE ORIGIN OF SNAKES

Identifieur interne : 00F708 ( Main/Exploration ); précédent : 00F707; suivant : 00F709

THE ORIGIN OF SNAKES

Auteurs : A. D'A. Bellairs [Jamaïque] ; Garth Underwood [Jamaïque]

Source :

RBID : ISTEX:AD7A19A2AF9A2ED6721EE8CEBACD3B89E3A19CAB

Descripteurs français

English descriptors

Abstract

1. Current theories of ophidian evolution suggest that the snakes have been derived either from aquatic, above‐ground terrestrial, or burrowing ancestors. It is generally supposed that the ancestors of snakes, irrespective of their habits, were closely related to the platynotid lizards. In the absence of adequate palaeontological data, the respective merits of these assumptions must mainly be assessed on evidence obtained from study of living forms. 2. The close relationship between the snakes and lizards is pointed out in this article, and the main characteristics of the different families of fossil and living snakes are reviewed. 3. Many important features of the snakes as a group are described and their functional significance is discussed. Comparison with the corresponding condition in lizards is made. Ophidian characters regarded as being of particular significance include the bony investment of the forebrain, the platytrabic chondrocranium with absence of the interorbital septum and endocranial side‐walls, the absence of the epipterygoids and temporal arcades and the extreme mobility of the jaw skeleton in most forms; the presence of zygosphenal articulations throughout the vertebral column; the elaboration of the trunk musculature and ventral scales; the extreme concentration of alkali‐metal cation on the secretory side. (For reviews of evidence, see Crane (1950), Hokin & Rehm (1947), Rehm (1950).) (2) When the two sides of the mucosa are connected electrically, a current of relatively large magnitude can be maintained which requires the continuous performance of electrical work (Rehm, 1943; Rehm & Hokin, 1948; Crane, Davies & Longmuir, 1946, 1948 a; Crane & Davies, 19486). (3) There is a fall in the p.d. across the mucosa with the onset of secretion, but once secretion is well established further increases in the rate of secretion can occur with only small changes in the p.d. (cf. Crane, 1950; Rehm, 1944; Rehm, 1950). (4) The change from the non‐secretory to the secretory state and back is always associated with concomitant changes in the electrical parameters of the mucosa, whether these changes occur spontaneously or by drug action. In the absence of oxygen and in dead mucosae both p.d. and acid secretion are abolished (cf. Crane, 1950; Rehm & Hokin, 1947; Rehm, 1950). (5) Passage of electric current (c. 1 mA./cm.2) through the mucosa from an external source increases or decreases the rate of secretion of acid by a secreting mucosa according as the applied current enhances or opposes the spontaneous potential measured between calomel electrodes on either side of the mucosa (Rehm, 1945; Crane et al. 1946, 19486). (6) Passage of current does not initiate secretion in the dog (Rehm, 1945) but may do so in the frog (Crane et al. 1948 b). These results were obtained with intact gastric mucosa, and because of the technical difficulties involved it has not, so far, been possible to obtain direct information regarding the detailed electric changes in and around the oxyntic cells. A difficulty is that these cells are mostly isolated from each other and make up only about one‐tenth of the volume of the mucosa (Davies & Roughton, 1948) and about one‐twentieth of the dry weight (calculated from Engström & Glick, 1950). However, quantitative relations have been estimated (Rehm, 1943; Rehm & Hokin, 1948; Rehm, 1950; Crane & Davies, 1948b, 1950b), and it seems certain that the energy required for secretion by acid‐secreting gastric mucosa is greater than the maximum electrical energy output of non‐secreting gastric mucosa. Since acid secretion is associated with a great increase in the rate of respiration of oxyntic cells (Davies, 1948a), and hence in the available metabolic power, care is clearly needed when comparing activities in the secreting and non‐secreting mucosa. It is more difficult to determine the relation between the energy required for the increase in acid secretion during the passage of electric current from nutrient to secretory side, and the energy available from this current. Although the total power expended by the current is greater than that required, the fraction capable of doing useful work is probably less. On the other hand, it seems probable that the gastric mucosa can supply sufficient coulombs of electricity to account for the production of the hydrogen ions, and that this also applies to the increased rate of acid secretion when current from an external source is passed through the mucosa (Rehm, 1950). Before attempting to include these observations in a theory of the mechanism of hydrochloric acid production it is necessary to return to a further consideration of the biochemistry of gastric mucosa. the condition in burrowing lizards, together with the other primitive features displayed, suggest that forms such as Cylindrophis (Fig. iA) and Ilysia have not departed greatly from the basal ophidian type. The late Cretaceous Dinilysia seems unlikely to have been a burrower on account of its relatively large size. From the evolutionary standpoint adopted, this snake may be considered as representing an early venture in above‐ground radiation on the part of this archaic family. The Uropeltidae shows many resemblances with the Anilidae (Haas, 1931 b), but has acquired certain aberrant features (e.g. modified occipito‐vertebral articulation), and the vestigial hindlimbs have undergone further reduction. The presence of two transverse ventral scale rows to each body segment (possibly a primitive feature and shared by the Leptotyphlopidae and Typhlopidae) suggests that the Uropeltidae have not been directly derived from the Anilidae. The Boidae and the allied Xenopeltidae possess many primitive characters, especially of the viscera and vascular system; at the same time they show certain advanced features and have undergone a minimum of aberrant specialization. The central position accorded to these families in Boulenger's scheme (1893‐6) appears to be fully justified. While zoo‐geographical considerations seem to show that the Boinae are the more primitive of the two boid subfamilies (Darlington, 1948), the occurrence of such features as premaxillary teeth and a supraorbital bone among the Pythoninae suggest that the latter is the older group. The whole family is of particular interest since its different members perhaps illustrate, both in structure and in range of habits, the characteristics of the snakes in general at the end of the Mesozoic, during the early stages in their radiation as an above‐ground group.

Url:
DOI: 10.1111/j.1469-185X.1951.tb00646.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">THE ORIGIN OF SNAKES</title>
<author>
<name sortKey="Bellairs, A D A" sort="Bellairs, A D A" uniqKey="Bellairs A" first="A. D'A." last="Bellairs">A. D'A. Bellairs</name>
</author>
<author>
<name sortKey="Underwood, Garth" sort="Underwood, Garth" uniqKey="Underwood G" first="Garth" last="Underwood">Garth Underwood</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AD7A19A2AF9A2ED6721EE8CEBACD3B89E3A19CAB</idno>
<date when="1951" year="1951">1951</date>
<idno type="doi">10.1111/j.1469-185X.1951.tb00646.x</idno>
<idno type="url">https://api.istex.fr/document/AD7A19A2AF9A2ED6721EE8CEBACD3B89E3A19CAB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">005648</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">005648</idno>
<idno type="wicri:Area/Istex/Curation">005648</idno>
<idno type="wicri:Area/Istex/Checkpoint">007397</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">007397</idno>
<idno type="wicri:doubleKey">1464-7931:1951:Bellairs A:the:origin:of</idno>
<idno type="wicri:Area/Main/Merge">010073</idno>
<idno type="wicri:Area/Main/Curation">00F708</idno>
<idno type="wicri:Area/Main/Exploration">00F708</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">THE ORIGIN OF SNAKES</title>
<author>
<name sortKey="Bellairs, A D A" sort="Bellairs, A D A" uniqKey="Bellairs A" first="A. D'A." last="Bellairs">A. D'A. Bellairs</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Jamaïque</country>
<wicri:regionArea>Department of Anatomy, London Hospital Medical College, and Department of Zoology, University College of the West Indies</wicri:regionArea>
<wicri:noRegion>University College of the West Indies</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Underwood, Garth" sort="Underwood, Garth" uniqKey="Underwood G" first="Garth" last="Underwood">Garth Underwood</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Jamaïque</country>
<wicri:regionArea>Department of Anatomy, London Hospital Medical College, and Department of Zoology, University College of the West Indies</wicri:regionArea>
<wicri:noRegion>University College of the West Indies</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biological Reviews</title>
<title level="j" type="alt">BIOLOGICAL REVIEWS</title>
<idno type="ISSN">1464-7931</idno>
<idno type="eISSN">1469-185X</idno>
<imprint>
<biblScope unit="vol">26</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="193">193</biblScope>
<biblScope unit="page" to="237">237</biblScope>
<biblScope unit="page-count">45</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1951-05">1951-05</date>
</imprint>
<idno type="ISSN">1464-7931</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1464-7931</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acid secretion</term>
<term>Adaptive</term>
<term>Adaptive radiation</term>
<term>Amer</term>
<term>Amphisbaenids</term>
<term>Anat</term>
<term>Anatomie</term>
<term>Anguimorph lizards</term>
<term>Anguimorpha</term>
<term>Anilidae</term>
<term>Anterior part</term>
<term>Aquatic</term>
<term>Aquatic adaptation</term>
<term>Aquatic forms</term>
<term>Aquatic life</term>
<term>Arterial arches</term>
<term>Articulation</term>
<term>Beddard</term>
<term>Bellairs</term>
<term>Bellairs boyd</term>
<term>Body musculature</term>
<term>Body segment</term>
<term>Boidae</term>
<term>Boids</term>
<term>Bony investment</term>
<term>Bony skull</term>
<term>Boulenger</term>
<term>Canaliculus</term>
<term>Carotid</term>
<term>Cartilage</term>
<term>Caudal</term>
<term>Caudal chevrons</term>
<term>Certain lizards</term>
<term>Certain snakes</term>
<term>Chevron</term>
<term>Chondrocranium</term>
<term>Chromosome</term>
<term>Ciliary</term>
<term>Ciliary body</term>
<term>Colubrid</term>
<term>Comparative anatomy</term>
<term>Conjunctival space</term>
<term>Copulatory organs</term>
<term>Coronoid</term>
<term>Costal process</term>
<term>Cranial</term>
<term>Cranial anatomy</term>
<term>Cranial cavity</term>
<term>Cranial kinesis</term>
<term>Cranial nerves</term>
<term>Cretaceous</term>
<term>Cutaneous</term>
<term>Different families</term>
<term>Dolichosaurs</term>
<term>Dorsal</term>
<term>Downgrowths</term>
<term>Duct</term>
<term>Early snakes</term>
<term>Early stages</term>
<term>Elaboration</term>
<term>Elongation</term>
<term>Epigean life</term>
<term>Epipterygoids</term>
<term>Essential features</term>
<term>Eyelid</term>
<term>Foramen</term>
<term>Fossil</term>
<term>Fossil snakes</term>
<term>Fossorial</term>
<term>Fossorial adaptation</term>
<term>Fossorial specialization</term>
<term>Fossorial types</term>
<term>Functional significance</term>
<term>Gadow</term>
<term>Gape</term>
<term>Gastric mucosa</term>
<term>Gastrosteges</term>
<term>General biology</term>
<term>Girdle</term>
<term>Greater part</term>
<term>Haas</term>
<term>Haemopophyses</term>
<term>Harderian</term>
<term>Harderian gland</term>
<term>Hindlimb</term>
<term>Hist</term>
<term>Hoffstetter</term>
<term>Integument</term>
<term>Interorbital</term>
<term>Interorbital septum</term>
<term>Iris</term>
<term>Iris muscle</term>
<term>Lachrymal</term>
<term>Lachrymal duct</term>
<term>Large dots</term>
<term>Large size</term>
<term>Lateral</term>
<term>Leptotyphlopidae</term>
<term>Limb</term>
<term>Limb rudiments</term>
<term>Lizard</term>
<term>Locomotion</term>
<term>Locomotory mechanism</term>
<term>Lond</term>
<term>Lower cretaceous</term>
<term>Mahendra</term>
<term>Main characteristics</term>
<term>Many boids</term>
<term>Many lizards</term>
<term>Many snakes</term>
<term>Maxilla</term>
<term>Mesozoic</term>
<term>Midline</term>
<term>Modification</term>
<term>Morph</term>
<term>Mosasaurs</term>
<term>Mosauer</term>
<term>Musculature</term>
<term>Nasal</term>
<term>Nasal capsule</term>
<term>Nictitating membrane</term>
<term>Nopsca</term>
<term>Ophidian</term>
<term>Ophidian condition</term>
<term>Ophidian evolution</term>
<term>Ophidian vertebrae</term>
<term>Optic nerve</term>
<term>Orbital</term>
<term>Orbital cartilages</term>
<term>Orbitotemporal region</term>
<term>Ossicle</term>
<term>Other hand</term>
<term>Other lizards</term>
<term>Other reptiles</term>
<term>Other snakes</term>
<term>Pachyophidae</term>
<term>Palaeophidae</term>
<term>Palatine</term>
<term>Parallel evolution</term>
<term>Parietal</term>
<term>Parietal downgrowths</term>
<term>Particular interest</term>
<term>Pectoral girdle</term>
<term>Peculiarity</term>
<term>Pelvic rudiments</term>
<term>Personal communication</term>
<term>Personal observations</term>
<term>Phylogenetic</term>
<term>Pineal foramen</term>
<term>Platynota</term>
<term>Platynotid</term>
<term>Platynotid lizards</term>
<term>Platytrabic chondrocranium</term>
<term>Posterior part</term>
<term>Premaxilla</term>
<term>Premaxillary teeth</term>
<term>Proc</term>
<term>Protractor</term>
<term>Pterygoid</term>
<term>Pterygoid teeth</term>
<term>Pulmonary artery</term>
<term>Quadrate</term>
<term>Rectilinear locomotion</term>
<term>Rehm</term>
<term>Rehm hokin</term>
<term>Reptile</term>
<term>Retina</term>
<term>Retractor</term>
<term>Rib</term>
<term>Right lung</term>
<term>Rudiments</term>
<term>Salivary glands</term>
<term>Same time</term>
<term>Sauria</term>
<term>Saurian</term>
<term>Schmidt</term>
<term>Scleral</term>
<term>Scleral cartilage</term>
<term>Scleral ossicles</term>
<term>Sense organs</term>
<term>Septum</term>
<term>Serpentes</term>
<term>Skeleton</term>
<term>Skull</term>
<term>Smith woodward</term>
<term>Snake</term>
<term>Special reference</term>
<term>Squamata</term>
<term>Suborder</term>
<term>Such features</term>
<term>Such forms</term>
<term>Such movement</term>
<term>Supratemporal</term>
<term>Temporal arcades</term>
<term>Temporal region</term>
<term>Trabecula</term>
<term>Tracheal</term>
<term>Tracheal lung</term>
<term>Transverse ventral scale rows</term>
<term>Trigeminal ganglion</term>
<term>Trunk musculature</term>
<term>Tympanic</term>
<term>Tympanic membrane</term>
<term>Typhlopidae</term>
<term>Typhlops</term>
<term>Uropeltidae</term>
<term>Varanidae</term>
<term>Vascular system</term>
<term>Venom apparatus</term>
<term>Ventral</term>
<term>Ventral scales</term>
<term>Vergleichenden anatomie</term>
<term>Vertebra</term>
<term>Vertebral column</term>
<term>Vertebrate</term>
<term>Viper</term>
<term>Vipera berus</term>
<term>Viperidae</term>
<term>Visual cells</term>
<term>Vomeronasal</term>
<term>Vomeronasal apparatus</term>
<term>Vomeronasal organs</term>
<term>Wide gape</term>
<term>Wide range</term>
<term>Wien</term>
<term>Xenopeltidae</term>
<term>Zool</term>
<term>Zygosphenal articulations</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acid secretion</term>
<term>Adaptive</term>
<term>Adaptive radiation</term>
<term>Amer</term>
<term>Amphisbaenids</term>
<term>Anat</term>
<term>Anatomie</term>
<term>Anguimorph lizards</term>
<term>Anguimorpha</term>
<term>Anilidae</term>
<term>Anterior part</term>
<term>Aquatic</term>
<term>Aquatic adaptation</term>
<term>Aquatic forms</term>
<term>Aquatic life</term>
<term>Arterial arches</term>
<term>Articulation</term>
<term>Beddard</term>
<term>Bellairs</term>
<term>Bellairs boyd</term>
<term>Body musculature</term>
<term>Body segment</term>
<term>Boidae</term>
<term>Boids</term>
<term>Bony investment</term>
<term>Bony skull</term>
<term>Boulenger</term>
<term>Canaliculus</term>
<term>Carotid</term>
<term>Cartilage</term>
<term>Caudal</term>
<term>Caudal chevrons</term>
<term>Certain lizards</term>
<term>Certain snakes</term>
<term>Chevron</term>
<term>Chondrocranium</term>
<term>Chromosome</term>
<term>Ciliary</term>
<term>Ciliary body</term>
<term>Colubrid</term>
<term>Comparative anatomy</term>
<term>Conjunctival space</term>
<term>Copulatory organs</term>
<term>Coronoid</term>
<term>Costal process</term>
<term>Cranial</term>
<term>Cranial anatomy</term>
<term>Cranial cavity</term>
<term>Cranial kinesis</term>
<term>Cranial nerves</term>
<term>Cretaceous</term>
<term>Cutaneous</term>
<term>Different families</term>
<term>Dolichosaurs</term>
<term>Dorsal</term>
<term>Downgrowths</term>
<term>Duct</term>
<term>Early snakes</term>
<term>Early stages</term>
<term>Elaboration</term>
<term>Elongation</term>
<term>Epigean life</term>
<term>Epipterygoids</term>
<term>Essential features</term>
<term>Eyelid</term>
<term>Foramen</term>
<term>Fossil</term>
<term>Fossil snakes</term>
<term>Fossorial</term>
<term>Fossorial adaptation</term>
<term>Fossorial specialization</term>
<term>Fossorial types</term>
<term>Functional significance</term>
<term>Gadow</term>
<term>Gape</term>
<term>Gastric mucosa</term>
<term>Gastrosteges</term>
<term>General biology</term>
<term>Girdle</term>
<term>Greater part</term>
<term>Haas</term>
<term>Haemopophyses</term>
<term>Harderian</term>
<term>Harderian gland</term>
<term>Hindlimb</term>
<term>Hist</term>
<term>Hoffstetter</term>
<term>Integument</term>
<term>Interorbital</term>
<term>Interorbital septum</term>
<term>Iris</term>
<term>Iris muscle</term>
<term>Lachrymal</term>
<term>Lachrymal duct</term>
<term>Large dots</term>
<term>Large size</term>
<term>Lateral</term>
<term>Leptotyphlopidae</term>
<term>Limb</term>
<term>Limb rudiments</term>
<term>Lizard</term>
<term>Locomotion</term>
<term>Locomotory mechanism</term>
<term>Lond</term>
<term>Lower cretaceous</term>
<term>Mahendra</term>
<term>Main characteristics</term>
<term>Many boids</term>
<term>Many lizards</term>
<term>Many snakes</term>
<term>Maxilla</term>
<term>Mesozoic</term>
<term>Midline</term>
<term>Modification</term>
<term>Morph</term>
<term>Mosasaurs</term>
<term>Mosauer</term>
<term>Musculature</term>
<term>Nasal</term>
<term>Nasal capsule</term>
<term>Nictitating membrane</term>
<term>Nopsca</term>
<term>Ophidian</term>
<term>Ophidian condition</term>
<term>Ophidian evolution</term>
<term>Ophidian vertebrae</term>
<term>Optic nerve</term>
<term>Orbital</term>
<term>Orbital cartilages</term>
<term>Orbitotemporal region</term>
<term>Ossicle</term>
<term>Other hand</term>
<term>Other lizards</term>
<term>Other reptiles</term>
<term>Other snakes</term>
<term>Pachyophidae</term>
<term>Palaeophidae</term>
<term>Palatine</term>
<term>Parallel evolution</term>
<term>Parietal</term>
<term>Parietal downgrowths</term>
<term>Particular interest</term>
<term>Pectoral girdle</term>
<term>Peculiarity</term>
<term>Pelvic rudiments</term>
<term>Personal communication</term>
<term>Personal observations</term>
<term>Phylogenetic</term>
<term>Pineal foramen</term>
<term>Platynota</term>
<term>Platynotid</term>
<term>Platynotid lizards</term>
<term>Platytrabic chondrocranium</term>
<term>Posterior part</term>
<term>Premaxilla</term>
<term>Premaxillary teeth</term>
<term>Proc</term>
<term>Protractor</term>
<term>Pterygoid</term>
<term>Pterygoid teeth</term>
<term>Pulmonary artery</term>
<term>Quadrate</term>
<term>Rectilinear locomotion</term>
<term>Rehm</term>
<term>Rehm hokin</term>
<term>Reptile</term>
<term>Retina</term>
<term>Retractor</term>
<term>Rib</term>
<term>Right lung</term>
<term>Rudiments</term>
<term>Salivary glands</term>
<term>Same time</term>
<term>Sauria</term>
<term>Saurian</term>
<term>Schmidt</term>
<term>Scleral</term>
<term>Scleral cartilage</term>
<term>Scleral ossicles</term>
<term>Sense organs</term>
<term>Septum</term>
<term>Serpentes</term>
<term>Skeleton</term>
<term>Skull</term>
<term>Smith woodward</term>
<term>Snake</term>
<term>Special reference</term>
<term>Squamata</term>
<term>Suborder</term>
<term>Such features</term>
<term>Such forms</term>
<term>Such movement</term>
<term>Supratemporal</term>
<term>Temporal arcades</term>
<term>Temporal region</term>
<term>Trabecula</term>
<term>Tracheal</term>
<term>Tracheal lung</term>
<term>Transverse ventral scale rows</term>
<term>Trigeminal ganglion</term>
<term>Trunk musculature</term>
<term>Tympanic</term>
<term>Tympanic membrane</term>
<term>Typhlopidae</term>
<term>Typhlops</term>
<term>Uropeltidae</term>
<term>Varanidae</term>
<term>Vascular system</term>
<term>Venom apparatus</term>
<term>Ventral</term>
<term>Ventral scales</term>
<term>Vergleichenden anatomie</term>
<term>Vertebra</term>
<term>Vertebral column</term>
<term>Vertebrate</term>
<term>Viper</term>
<term>Vipera berus</term>
<term>Viperidae</term>
<term>Visual cells</term>
<term>Vomeronasal</term>
<term>Vomeronasal apparatus</term>
<term>Vomeronasal organs</term>
<term>Wide gape</term>
<term>Wide range</term>
<term>Wien</term>
<term>Xenopeltidae</term>
<term>Zool</term>
<term>Zygosphenal articulations</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Reptile</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">1. Current theories of ophidian evolution suggest that the snakes have been derived either from aquatic, above‐ground terrestrial, or burrowing ancestors. It is generally supposed that the ancestors of snakes, irrespective of their habits, were closely related to the platynotid lizards. In the absence of adequate palaeontological data, the respective merits of these assumptions must mainly be assessed on evidence obtained from study of living forms. 2. The close relationship between the snakes and lizards is pointed out in this article, and the main characteristics of the different families of fossil and living snakes are reviewed. 3. Many important features of the snakes as a group are described and their functional significance is discussed. Comparison with the corresponding condition in lizards is made. Ophidian characters regarded as being of particular significance include the bony investment of the forebrain, the platytrabic chondrocranium with absence of the interorbital septum and endocranial side‐walls, the absence of the epipterygoids and temporal arcades and the extreme mobility of the jaw skeleton in most forms; the presence of zygosphenal articulations throughout the vertebral column; the elaboration of the trunk musculature and ventral scales; the extreme concentration of alkali‐metal cation on the secretory side. (For reviews of evidence, see Crane (1950), Hokin & Rehm (1947), Rehm (1950).) (2) When the two sides of the mucosa are connected electrically, a current of relatively large magnitude can be maintained which requires the continuous performance of electrical work (Rehm, 1943; Rehm & Hokin, 1948; Crane, Davies & Longmuir, 1946, 1948 a; Crane & Davies, 19486). (3) There is a fall in the p.d. across the mucosa with the onset of secretion, but once secretion is well established further increases in the rate of secretion can occur with only small changes in the p.d. (cf. Crane, 1950; Rehm, 1944; Rehm, 1950). (4) The change from the non‐secretory to the secretory state and back is always associated with concomitant changes in the electrical parameters of the mucosa, whether these changes occur spontaneously or by drug action. In the absence of oxygen and in dead mucosae both p.d. and acid secretion are abolished (cf. Crane, 1950; Rehm & Hokin, 1947; Rehm, 1950). (5) Passage of electric current (c. 1 mA./cm.2) through the mucosa from an external source increases or decreases the rate of secretion of acid by a secreting mucosa according as the applied current enhances or opposes the spontaneous potential measured between calomel electrodes on either side of the mucosa (Rehm, 1945; Crane et al. 1946, 19486). (6) Passage of current does not initiate secretion in the dog (Rehm, 1945) but may do so in the frog (Crane et al. 1948 b). These results were obtained with intact gastric mucosa, and because of the technical difficulties involved it has not, so far, been possible to obtain direct information regarding the detailed electric changes in and around the oxyntic cells. A difficulty is that these cells are mostly isolated from each other and make up only about one‐tenth of the volume of the mucosa (Davies & Roughton, 1948) and about one‐twentieth of the dry weight (calculated from Engström & Glick, 1950). However, quantitative relations have been estimated (Rehm, 1943; Rehm & Hokin, 1948; Rehm, 1950; Crane & Davies, 1948b, 1950b), and it seems certain that the energy required for secretion by acid‐secreting gastric mucosa is greater than the maximum electrical energy output of non‐secreting gastric mucosa. Since acid secretion is associated with a great increase in the rate of respiration of oxyntic cells (Davies, 1948a), and hence in the available metabolic power, care is clearly needed when comparing activities in the secreting and non‐secreting mucosa. It is more difficult to determine the relation between the energy required for the increase in acid secretion during the passage of electric current from nutrient to secretory side, and the energy available from this current. Although the total power expended by the current is greater than that required, the fraction capable of doing useful work is probably less. On the other hand, it seems probable that the gastric mucosa can supply sufficient coulombs of electricity to account for the production of the hydrogen ions, and that this also applies to the increased rate of acid secretion when current from an external source is passed through the mucosa (Rehm, 1950). Before attempting to include these observations in a theory of the mechanism of hydrochloric acid production it is necessary to return to a further consideration of the biochemistry of gastric mucosa. the condition in burrowing lizards, together with the other primitive features displayed, suggest that forms such as Cylindrophis (Fig. iA) and Ilysia have not departed greatly from the basal ophidian type. The late Cretaceous Dinilysia seems unlikely to have been a burrower on account of its relatively large size. From the evolutionary standpoint adopted, this snake may be considered as representing an early venture in above‐ground radiation on the part of this archaic family. The Uropeltidae shows many resemblances with the Anilidae (Haas, 1931 b), but has acquired certain aberrant features (e.g. modified occipito‐vertebral articulation), and the vestigial hindlimbs have undergone further reduction. The presence of two transverse ventral scale rows to each body segment (possibly a primitive feature and shared by the Leptotyphlopidae and Typhlopidae) suggests that the Uropeltidae have not been directly derived from the Anilidae. The Boidae and the allied Xenopeltidae possess many primitive characters, especially of the viscera and vascular system; at the same time they show certain advanced features and have undergone a minimum of aberrant specialization. The central position accorded to these families in Boulenger's scheme (1893‐6) appears to be fully justified. While zoo‐geographical considerations seem to show that the Boinae are the more primitive of the two boid subfamilies (Darlington, 1948), the occurrence of such features as premaxillary teeth and a supraorbital bone among the Pythoninae suggest that the latter is the older group. The whole family is of particular interest since its different members perhaps illustrate, both in structure and in range of habits, the characteristics of the snakes in general at the end of the Mesozoic, during the early stages in their radiation as an above‐ground group.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Jamaïque</li>
</country>
</list>
<tree>
<country name="Jamaïque">
<noRegion>
<name sortKey="Bellairs, A D A" sort="Bellairs, A D A" uniqKey="Bellairs A" first="A. D'A." last="Bellairs">A. D'A. Bellairs</name>
</noRegion>
<name sortKey="Underwood, Garth" sort="Underwood, Garth" uniqKey="Underwood G" first="Garth" last="Underwood">Garth Underwood</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00F708 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00F708 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:AD7A19A2AF9A2ED6721EE8CEBACD3B89E3A19CAB
   |texte=   THE ORIGIN OF SNAKES
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022